Browse by author
Lookup NU author(s): Sridhar Govindarajan, Emeritus Professor Calum McNeilORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Glutamate mediates most of the excitatory synaptic transmission in the brain, and its abnormal regulation is considered a key factor underlying the appearance and progression of many neurodegenerative and psychiatric diseases. In this work, a microdisc-based amperometric biosensor for glutamate detection with highly enhanced selectivity and good stability is proposed. The biosensor utilizes the enzyme glutamate oxidase which was dip-coated onto 125 μm diameter platinum discs. To improve selectivity, phosphatidylethanolamine was pre-coated prior to enzyme deposition, and electropolymerization of o-phenylenediamine was performed to entrap the enzyme within a polymer matrix. A variety of coating configurations were tested in order to optimize biosensor performance. For stability measurements, biosensors were biased continuously and calibration curves calculated each day for a period of 5–6 days. The optimized biosensors exhibited very high sensitivity (71 ± 1 mA M−1 cm−2), low detection limit of ∼2.5 μM glutamate, selectivity (over 87% against ascorbic acid), very good temporal stability during continuous use, and a response time of <5 s. These biosensors are therefore good candidates for further development as devices for continuous monitoring during traumatic brain injury or neurosurgery.
Author(s): Govindarajan S, McNeil CJ, Lowry JP, McMahon CP, O'Neill RD
Publication type: Article
Publication status: Published
Journal: Sensors and Actuators B: Chemical
Year: 2013
Volume: 178
Pages: 606–614
Print publication date: 16/01/2013
ISSN (print): 0925-4005
ISSN (electronic): 1873-3077
Publisher: Elsevier
URL: http://dx.doi.org/10.1016/j.snb.2012.12.077
DOI: 10.1016/j.snb.2012.12.077
Altmetrics provided by Altmetric