Browse by author
Lookup NU author(s): Dr Reza Rafiee, Emeritus Professor Satnam Dlay, Dr Wai Lok Woo
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
In this paper, a two-stage unsupervised segmentation approach based on ensemble clustering is proposed to extract the focused regions from low depth-of-field (DOF) images. The first stage is to cluster image blocks in a joint contrast-energy feature space into three constituent groups. To achieve this, we make use of a normal mixture-based model along with standard expectation-maximization (EM) algorithm at two consecutive levels of block size. To avoid the common problem of local optima experienced in many models, an ensemble EM clustering algorithm is proposed. As a result, relevant blocks closely conforming to image objects are extracted. In stage two, a binary saliency map is constructed from the relevant blocks at the pixel level, which is based on difference of Gaussian (DOG) and binarization methods. Then, a set of morphological operations is employed to create the region-of-interest (ROI) from the map. Experimental results demonstrate that the proposed approach achieves an F-measure of 91.3% and is computationally 3 times faster than the existing state-of-the-art approach.
Author(s): Rafiee G, Dlay SS, Woo WL
Publication type: Article
Publication status: Published
Journal: Pattern Recognition
Year: 2013
Volume: 46
Issue: 10
Pages: 2685-2699
Print publication date: 03/04/2013
ISSN (print): 0031-3203
ISSN (electronic): 1873-5142
Publisher: Elsevier
URL: http://dx.doi.org/10.1016/j.patcog.2013.03.006
DOI: 10.1016/j.patcog.2013.03.006
Altmetrics provided by Altmetric