Toggle Main Menu Toggle Search

Open Access padlockePrints

Spreading dynamics on spatially constrained complex brain networks

Lookup NU author(s): Professor Marcus Kaiser


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way.

Publication metadata

Author(s): O'Dea R, Crofts JJ, Kaiser M

Publication type: Article

Publication status: Published

Journal: Journal of the Royal Society Interface

Year: 2013

Volume: 10

Issue: 81

Print publication date: 13/02/2013

ISSN (print): 1742-5689

ISSN (electronic): 1742-5662

Publisher: The Royal Society Publishing


DOI: 10.1098/rsif.2013.0016


Altmetrics provided by Altmetric


Funder referenceFunder name
CARMEN e-science project
WCU program through the KOSEF