Toggle Main Menu Toggle Search

Open Access padlockePrints

Real-Time Temperature Estimation for Power MOSFETs Considering Thermal Ageing Effects

Lookup NU author(s): Huifeng Chen, Dr Bing Ji, Professor Volker Pickert, Dr Wenping Cao


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Publication metadata

Author(s): Chen H, Ji B, Pickert V, Cao W

Publication type: Article

Publication status: Published

Journal: IEEE Transactions on Device and Materials Reliability

Year: 2014

Volume: 14

Issue: 1

Pages: 220-228

Print publication date: 01/03/2014

Online publication date: 22/11/2013

Acceptance date: 15/11/2013

ISSN (print): 1530-4388

ISSN (electronic): 1558-2574

Publisher: IEEE


DOI: 10.1109/TDMR.2013.2292547


Altmetrics provided by Altmetric