Browse by author
Lookup NU author(s): Dr Anke Neumann
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Despite the importance of Fe redox cycling in clay minerals, the mechanism and location of electron transfer remain unclear. More specifically, there is some controversy whether electron transfer can occur through both basal and edge surfaces. Here we used Mössbauer spectroscopy combined with selective chemical extractions to study electron transfer from Fe(II) sorbed to basal planes and edge OH-groups of clay mineral NAu?1. Fe(II) sorbed predominantly to basal planes at pH values below 6.0 and to edge OH-groups at pH value 7.5. Significant electron transfer occurred from edge OH-group bound Fe(II) at pH 7.5, whereas electron transfer from basal plane-sorbed Fe(II) to structural Fe(III) in clay mineral NAu?1 at pH 4.0 and 6.0 occurred but to a much lower extent than from edge-bound Fe(II). Mössbauer hyperfine parameters for Fe(II)-reacted NAu?1 at pH 7.5 were consistent with structural Fe(II), whereas values found at pH 4.0 and 6.0 were indicative of binding environments similar to basal plane-sorbed Fe(II). Reference experiments with Fe-free synthetic montmorillonite SYn?1 provided supporting evidence for the assignment of the hyperfine parameters to Fe(II) bound to basal planes and edge OH-groups. Our findings demonstrate that electron transfer to structural Fe in clay minerals can occur from Fe(II) sorbed to both basal planes and edge OH-groups. These findings require us to reassess the mechanisms of abiotic and microbial Fe reduction in clay minerals as well as the importance of Fe-bearing clay minerals as a renewable source of redox equivalents in subsurface environments.
Author(s): Neumann A, Olson TL, Scherer MM
Publication type: Article
Publication status: Published
Journal: Environmental Science & Technology
Year: 2013
Volume: 37
Issue: 13
Pages: 6969-6977
Print publication date: 21/03/2013
Date deposited: 10/03/2014
ISSN (print): 0013-936X
ISSN (electronic): 1520-5851
Publisher: American Chemical Society
URL: http://dx.doi.org/10.1021/es304744v
DOI: 10.1021/es304744v
Altmetrics provided by Altmetric