Toggle Main Menu Toggle Search

Open Access padlockePrints

Novel Multi-Layer Network Decomposition Boosting Acceleration of Multi-core Algorithms

Lookup NU author(s): Athanasios Grivas, Professor Alex Yakovlev


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Complex networks are a technique for the modeling and analysis of large data sets in many scientific and engineering disciplines. Due to their excessive size conventional algorithms and single core processors struggle with the efficient processing of such networks. Employing multi-core graphic processing units (GPUs) could provide sufficient processing power for the analysis of such networks. However, commonly designed algorithms cannot exploit these massively parallel processing power for the analysis of such networks. In this paper, we present the Multi Layer Network Decomposition (MLND) approach which provides a general approach for parallel network analysis using multi-core processors via efficient partitioning and mapping of networks onto GPU architectures. Evaluation using a 336 core GPU graphic card demonstrated a 16x speed-up in complex network analysis relative to a CPU based approach.

Publication metadata

Author(s): Grivas AK, Mak T, Yakovlev A, Wray J

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: 24th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP)

Year of Conference: 2013

Pages: 249-252

ISSN: 2160-0511

Publisher: IEEE


DOI: 10.1109/ASAP.2013.6567583

Library holdings: Search Newcastle University Library for this item

ISBN: 9781479904945