Toggle Main Menu Toggle Search

Open Access padlockePrints

Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy

Lookup NU author(s): Professor Raj KalariaORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Failure of elimination of proteins from the brain is a major feature in many neurodegenerative diseases. Insoluble proteins accumulate in brain parenchyma and in walls of cerebral capillaries and arteries. Cerebral amyloid angiopathy (CAA) is a descriptive term for amyloid in vessel walls. Here, we adopt the term protein elimination failure angiopathy (PEFA) to focus on mechanisms involved in the pathogenesis of a spectrum of disorders that exhibit both unique and common features of protein accumulation in blood vessel walls. We review (a) normal pathways and mechanisms by which proteins and other soluble metabolites are eliminated from the brain along 100-to 150-nmthick basement membranes in walls of cerebral capillaries and arteries that serve as routes for lymphatic drainage of the brain; (b) a spectrum of proteins involved in PEFA; and (c) changes that occur in artery walls and contribute to failure of protein elimination. We use accumulation of amyloid beta (Ab), prion protein and granular osmiophilic material (GOM) in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as examples of different factors involved in the aetiology and pathogenesis of PEFA. Finally, we discuss how knowledge of factors involved in PEFA may help to focus on new therapies for neurodegenerative diseases. When Ab (following immunotherapy) and prion protein are released from brain parenchyma they deposit in walls of cerebral capillaries and arteries; GOM in CADASIL accumulates primarily in artery walls. Therefore, the focus of therapy for protein clearance in neurodegenerative disease should perhaps be on facilitating perivascular elimination of proteins and reducing PEFA.

Publication metadata

Author(s): Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO

Publication type: Review

Publication status: Published

Journal: Neuropathology and Applied Neurobiology

Year: 2013

Volume: 39

Issue: 6

Pages: 593-611

Print publication date: 01/10/2013

Online publication date: 09/09/2013

Acceptance date: 07/03/2013

ISSN (print): 0305-1846

ISSN (electronic): 1365-2990



DOI: 10.1111/nan.12042