Browse by author
Lookup NU author(s): Professor Christopher Dennison
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Many reduced cupredoxins undergo a pH-dependent structural rearrangement, triggered by protonation of the His ligand belonging to the C-terminal hydrophobic loop, usually termed the acid transition. At variance with several members of the cupredoxin family, the acid transition is not observed for azurin (AZ). We have addressed this issue by performing molecular dynamics simulations of AZ and four mutants, in which the C-terminal loop has been replaced with those of other cupredoxins or with polyalanine loops. All of the loop mutants undergo the acid transition in the pH range of 4.4-5.5. The main differences between AZ and its loop mutants are the average value of the active site solvent accessible surface area and the extent of its fluctuations with time, together with an altered structure of the water layer around the copper center. Using functional mode analysis, we found that these variations arise from changes in nonbonding interactions in the second coordination sphere of the copper center, resulting from the loop mutation. Our results strengthen the view that the dynamics at the site relevant for function and its surroundings are crucial for protein activity and for metal-containing electron transferases.
Author(s): Paltrinieri L, Borsari M, Battistuzzi G, Sola M, Dennison C, de Groot BL, Corni S, Bortolotti CA
Publication type: Article
Publication status: Published
Journal: Biochemistry
Year: 2013
Volume: 52
Issue: 42
Pages: 7397-7404
Print publication date: 22/10/2013
Online publication date: 24/09/2013
Acceptance date: 23/09/2013
ISSN (print): 0006-2960
ISSN (electronic): 1943-295X
Publisher: American Chemical Society
URL: http://dx.doi.org/10.1021/bi400860n
DOI: 10.1021/bi400860n
Altmetrics provided by Altmetric