Browse by author
Lookup NU author(s): Dr Edwin Wong, Professor David KavanaghORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
We sequenced the whole exome of 35 cases and 7 controls from 9 age-related macular degeneration (AMD) families in whom known common genetic risk alleles could not explain their high disease burden and/or their early-onset advanced disease. Two families harbored novel rare mutations in CFH(R53C and D90G). R53C segregates perfectly with AMD in 11 cases (heterozygous) and 1 elderly control (reference allele) (LOD = 5.07, P = 6.7 x 10(-7)). In an independent cohort, 4 out of 1676 cases but none of the 745 examined controls or 4300 NHBLI Exome Sequencing Project (ESP) samples carried the R53C mutation (P = 0.0039). In another family of six siblings, D90G similarly segregated with AMD in five cases and one control (LOD = 1.22, P = 0.009). No other sample in our large cohort or the ESP had this mutation. Functional studies demonstrated that R53C decreased the ability of FH to perform decay accelerating activity. D90G exhibited a decrease in cofactor-mediated inactivation. Both of these changes would lead to a loss of regulatory activity, resulting in excessive alternative pathway activation. This study represents an initial application of the whole-exome strategy to families with early-onset AMD. It successfully identified high impact alleles leading to clearer functional insight into AMD etiopathogenesis.
Author(s): Yu Y, Triebwasser MP, Wong EKS, Schramm EC, Thomas B, Reynolds R, Mardis ER, Atkinson JP, Daly M, Raychaudhuri S, Kavanagh D, Seddon JM
Publication type: Article
Publication status: Published
Journal: Human Molecular Genetics
Year: 2014
Volume: 23
Issue: 19
Pages: 5283-5293
Print publication date: 01/10/2014
Online publication date: 20/05/2014
Acceptance date: 06/05/2014
Date deposited: 30/01/2015
ISSN (print): 0964-6906
ISSN (electronic): 1460-2083
Publisher: Oxford University Press
URL: http://dx.doi.org/10.1093/hmg/ddu226
DOI: 10.1093/hmg/ddu226
Altmetrics provided by Altmetric