Browse by author
Lookup NU author(s): Dr Matias Garcia-Constantino, Professor Paolo MissierORCiD, Professor Phil BlytheORCiD, Dr Amy Guo
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Abstract—Using current sensing technology, a wealth of data on driving sessions is potentially available through a combination of vehicle sensors and drivers’ physiology sensors (heart rate, breathing rate, skin temperature, etc.). Our hypothesis is that it should be possible to exploit the combination of time series produced by such multiple sensors during a driving session, in order to (i) learn models of normal driving behaviour, and (ii) use such models to detect important and potentially dangerous deviations from the norm in real-time, and thus enable the generation of appropriate alerts. Crucially, we believe that such models and interventions should and can be personalised and tailor-made for each individual driver. As an initial step towards this goal, in this paper we present techniques for assessing the impact of cognitive distraction on drivers, based on simple time series analysis. We have tested our method on a rich dataset of driving sessions, carried out in a professional simulator, involving a panel of volunteer drivers. Each session included a different type of cognitive distraction, and resulted in multiple time series from a variety of on-board sensors as well as sensors worn by the driver. Crucially, each driver also recorded an initial session with no distractions. In our model, such initial session provides the baseline times series that make it possible to quantitatively assess driver performance under distraction conditions.
Author(s): Garcia-Constantino M, Missier P, Blythe PT, Guo W
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: 17th International IEEE Conference on Intelligent Transportation Systems
Year of Conference: 2014
Pages: 2047-2053
Online publication date: 20/11/2014
Acceptance date: 01/01/1900
Date deposited: 02/12/2014
Publisher: IEEE
URL: http://dx.doi.org/10.1109/ITSC.2014.6958005
DOI: 10.1109/ITSC.2014.6958005
Library holdings: Search Newcastle University Library for this item
ISBN: 9781479960781