Browse by author
Lookup NU author(s): Dr Andrei Soliakov, Professor Jeremy LakeyORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Large area lipid bilayers, on solid surfaces, are useful in physical studies of biological membranes. It is advantageous to minimize the interactions of these bilayers with the substrate and this can be achieved via the formation of a floating supported bilayer (FSB) upon either a surface bound phospholipid bilayer or monolayer. The FSB's independence is enabled by the continuous water layer (greater than 15 angstrom) that remains between the two. However, previous FSBs have had limited stability and low density. Here, we demonstrate by surface plasmon resonance and neutron reflectivity, the formation of a complete self-assembled monolayer (SAM) on gold surfaces by a synthetic phosphatidylcholine bearing a thiol group at the end of one fatty acyl chain. Furthermore, a very dense FSB (more than 96%) of saturated phosphatidylcholine can be formed on this SAM by sequential Langmuir-Blodgett and Langmuir-Schaefer procedures. Neutron reflectivity used both isotopic and magnetic contrast to enhance the accuracy of the data fits. This system offers the means to study transmembrane proteins, membrane potential effects (using the gold as an electrode) and even model bacterial outer membranes. Using unsaturated phosphatidylcholines, which have previously failed to form stable FSBs, we achieved a coverage of 73%.
Author(s): Hughes AV, Holt SA, Daulton E, Soliakov A, Charlton TR, Roser SJ, Lakey JH
Publication type: Article
Publication status: Published
Journal: Journal of the Royal Society Interface
Year: 2014
Volume: 11
Issue: 98
Online publication date: 16/07/2014
Acceptance date: 24/06/2014
Date deposited: 02/02/2015
ISSN (print): 1742-5689
ISSN (electronic): 1742-5662
Publisher: Royal Society
URL: http://dx.doi.org/10.1098/rsif.2014.0447
DOI: 10.1098/rsif.2014.0447
Altmetrics provided by Altmetric