Browse by author
Lookup NU author(s): Dr Diego Miranda Saavedra
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The three PRL (phosphatases of regenerating liver) protein tyrosine phosphatases (PRL-1, -2 and -3) have been identified as key contributors to metastasis in several human cancers, yet the molecular basis of their pro-oncogenic property is unclear. Among the subfamily of PRL phosphatases, overexpression of PRL-2 in breast cancer cells has been shown to promote tumor growth by a mechanism that remains to be uncovered. Here we show that PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3. We further reveal that CNNM3 is not a phosphorylated substrate of PRL-2, and that the interaction occurs through a loop unique to the CBS pair domains of CNNM3 that exists only in organisms having PRL orthologs. Supporting the role of PRL-2 in cellular magnesium transport is the observation that PRL-2 knockdown results in a substantial decrease of cellular magnesium influx. Furthermore, in PRL-2 knockout mice, serum magnesium levels were significantly elevated as compared with control animals, indicating a pivotal role for PRL-2 in regulating cellular magnesium homeostasis. Although the expression levels of CNNM3 remained unchanged after magnesium depletion of various cancer cell lines, the interaction between endogenous PRL-2 and CNNM3 was markedly increased. Importantly, xenograft tumor assays with CNNM3 and a mutant form that does not associate with PRL-2 confirm that CNNM3 is itself pro-oncogenic, and that the PRL-2/CNNM3 association is important for conferring transforming activities. This finding is further confirmed from data in human breast cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index. In summary, we demonstrate that oncogenic PRL-2 controls tumor growth by modulating intracellular magnesium levels through binding with the CNNM3 magnesium transporter.
Author(s): Hardy S, Uetani N, Wong N, Kostantin E, Labbe DP, Begin LR, Mes-Masson A, Miranda-Saavedra D, Tremblay ML
Publication type: Article
Publication status: Published
Journal: Oncogene
Year: 2015
Volume: 34
Issue: 8
Pages: 986-995
Print publication date: 01/01/2015
Online publication date: 17/03/2014
Acceptance date: 06/01/2014
ISSN (print): 0950-9232
ISSN (electronic): 1476-5594
Publisher: Nature Publishing Group
URL: http://dx.doi.org/10.1038/onc.2014.33
DOI: 10.1038/onc.2014.33
Altmetrics provided by Altmetric