Browse by author
Lookup NU author(s): Professor Stuart DunningORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude–frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.
Author(s): Dunning SA, Rosser NJ, McColl ST, Reznichenko NV
Publication type: Article
Publication status: Published
Journal: Nature Communications
Year: 2015
Volume: 6
Online publication date: 19/08/2015
Acceptance date: 29/06/2015
Date deposited: 23/09/2015
ISSN (electronic): 2041-1723
Publisher: Nature Publishing Group
URL: http://www.nature.com/ncomms/2015/150819/ncomms8964/abs/ncomms8964.html
DOI: 10.1038/ncomms8964
Altmetrics provided by Altmetric