Toggle Main Menu Toggle Search

Open Access padlockePrints

Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site-and compound-specific characteristics

Lookup NU author(s): Professor Richard Luthy, Professor David WernerORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).


Abstract

A growing body of evidence shows that the effectiveness of in-situ activated carbon (AC) amendment to treat hydrophobic organic contaminants (HOCs) in sediments can be reliably predicted using a mass transfer modeling approach. This study analyzes available field data for characterizing AC-sediment distribution after mechanical mixing of AC into sediment. Those distributions are used to develop an HOC mass transfer model that accounts for plausible heterogeneities resulting from mixing AC into sediment. The model is applied to ten field sites in the U.S. and Europe with 2-3 representative HOCs from each site using site- and HOC-specific model parameters collected from the literature. The model predicts that the AC amendment reduces the pore-water HOC concentrations by more than 95% fifteen years after AC deployment for 18 of the 25 total simulated cases when the AC is applied at doses of 1.5 times sediment total organic carbon content with an upper limit of 5 dry wt%. The predicted effectiveness shows negative correlation with the HOC octanol-water partitioning coefficients and the sediment-water distribution coefficients, and positive correlation with the effectiveness calculated based on equilibrium coefficients of sediment and AC, suggesting the possibility for use of the values for screening-level assessments.


Publication metadata

Author(s): Choi Y, Cho YM, Luthy RG, Werner D

Publication type: Article

Publication status: Published

Journal: Journal of Hazardous Materials

Year: 2016

Volume: 301

Pages: 424-432

Print publication date: 15/01/2016

Online publication date: 09/09/2015

Acceptance date: 06/09/2015

Date deposited: 17/09/2015

ISSN (print): 0304-3894

ISSN (electronic): 1873-3336

Publisher: Elsevier

URL: http://dx.doi.org/10.1016/j.jhazmat.2015.09.016

DOI: 10.1016/j.jhazmat.2015.09.016


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
CW786669Chevron Energy Technology Company
ER-1552Department of Defense Strategic Environmental Research and Development Program (SERDP)

Share