Browse by author
Lookup NU author(s): Dr Narakorn SrinilORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Oil and gas exploration and production have been expanding in Arctic waters. However, numerical models for predicting the ice-induced vibrations (IIV) of offshore structures are still lacking in the literature. This study aims to develop a mathematical reduced-order model for predicting the two-dimensional IIV of offshore structures with geometric coupling and nonlinearities. A cylindrical structure subject to a moving uniform ice sheet is analyzed using the well-known Matlock model, which, in the present study, is extended and modified to account for a new empirical nonlinear stress–strain rate relationship determining the maximum compressive stress (MCS) of the ice. The model is further developed through the incorporation of ice temperature, brine content, air volume, grain size, ice thickness, and ice wedge angle effects on the ice compressive strength. These allow the effect of multiple ice properties on the ice–structure interaction to be investigated. A further advancement is the inclusion of an equation allowing the length of failed ice at a point of failure to vary with time. A mixture of existing equations and newly proposed empirical relationships is used. Structural geometric nonlinearities are incorporated into the numerical model through the use of Duffing oscillators, a technique previously proposed in vortex-induced vibration studies. The model is validated against results from the literature and provides new insights into IIV responses including the quasi-static, randomlike chaotic, and locked-in motions, depending on the ice velocity and system nonlinearities. This numerical Matlock–Duffing model shows a potential to be used in future IIV analysis of Arctic cylindrical structures, particularly fixed offshore structures, such as lighthouses, gravity bases, and wind turbine monopoles.
Author(s): McQueen H, Srinil N
Publication type: Article
Publication status: Published
Journal: Journal of Offshore Mechanics and Arctic Engineering
Year: 2016
Volume: 138
Issue: 1
Print publication date: 01/02/2016
Online publication date: 19/11/2015
Acceptance date: 06/10/2015
Date deposited: 02/02/2016
ISSN (print): 0892-7219
ISSN (electronic): 1528-896X
Publisher: The American Society of Mechanical Engineers
URL: http://dx.doi.org/10.1115/1.4031927
DOI: 10.1115/1.4031927
Altmetrics provided by Altmetric