Browse by author
Lookup NU author(s): Emeritus Professor Andrew MellorORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Dendritic cells (DCs) sense microbes via multiple innate receptors. Signals from different innate receptors are coordinated and integrated by DCs to generate specific innate and adaptive immune responses against pathogens. Previously, we have shown that two pathogen recognition receptors, TLR2 and dectin-1, which recognize the same microbial stimulus (zymosan) on DCs, induce mutually antagonistic regulatory or inflammatory responses, respectively. How diametric signals from these two receptors are coordinated in DCs to regulate or incite immunity is not known. In this study, we show that TLR2 signaling via AKT activates the β-catenin/T cell factor 4 pathway in DCs and programs them to drive T regulatory cell differentiation. Activation of β-catenin/T cell factor 4 was critical to induce regulatory molecules IL-10 (Il-10) and vitamin A metabolizing enzyme retinaldehyde dehydrogenase 2 (Aldh1a2) and to suppress proinflammatory cytokines. Deletion of β-catenin in DCs programmed them to drive Th17/Th1 cell differentiation in response to zymosan. Consistent with these findings, activation of the β-catenin pathway in DCs suppressed chronic inflammation and protected mice from Th17/Th1-mediated autoimmune neuroinflammation. Thus, activation of β-catenin in DCs via the TLR2 receptor is a novel mechanism in DCs that regulates autoimmune inflammation.
Author(s): Manoharan I, Hong Y, Suryawanshi A, Angus-Hill ML, Sun Z, Mellor AL, Munn DH, Manicassany S
Publication type: Article
Publication status: Published
Journal: Journal of Immunology
Year: 2014
Volume: 8
Issue: 193
Pages: 4203-4213
Print publication date: 15/10/2014
Online publication date: 10/09/2014
Acceptance date: 06/08/2014
ISSN (print): 0022-1759
ISSN (electronic): 1872-7905
Publisher: Elsevier
URL: http://dx.doi.org/10.4049/jimmunol.1400614
DOI: 10.4049/jimmunol.1400614
Altmetrics provided by Altmetric