Toggle Main Menu Toggle Search

Open Access padlockePrints

GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning

Lookup NU author(s): Professor Zhenhong Li


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The tropospheric horizontal gradients with high spatiotemporal resolutions provide important information to describe the azimuthally asymmetric delays, and significantly increase the ability of ground-based GNSS (Global Navigation Satellite Systems) within the field of meteorological studies, like the nowcasting of severe rainfall events. The recent rapid development of multi-GNSS constellations has potential to provide such high-resolution gradients with a significant degree of accuracy. In this study, we develop a multi-GNSS process for the precise retrieval of high-resolution tropospheric gradients. The tropospheric gradients with different temporal resolutions, retrieved from both single-system and multi-GNSS solutions, are validated using independent numerical weather models (NWM) data and water vapor radiometer (WVR) observations. The benefits of multi-GNSS processing for the retrieval of tropospheric gradients, as well as for the improvement of precise positioning, are demonstrated. The multi-GNSS high-resolution gradients agree well with those derived from the NWM and WVR, especially for the fast-changing peaks which are mostly associated with synoptic fronts. The multi-GNSS gradients behave in a much more stable manner than the single-system estimates, especially in cases of high temporal resolution, benefiting from the increased number of observed satellites and improved observation geometry. The high-resolution multi-GNSS gradients show higher correlation with the NWM and WVR gradients than the low-resolution gradients. Furthermore, the precision of station positions can also be noticeably improved by multi-GNSS fusion, and enhanced results can be achieved if the high-resolution gradient estimation is performed, instead of the commonly used daily gradient estimation in the multi-GNSS data processing.

Publication metadata

Author(s): Lu C, Li X, Li Z, Heinkelmann R, Nilsson T, Dick G, Ge M, Schuh H

Publication type: Article

Publication status: Published

Journal: Journal of Geophysical Research: Atmospheres

Year: 2016

Volume: 121

Issue: 2

Pages: 912-930

Print publication date: 27/01/2016

Online publication date: 29/01/2016

Acceptance date: 28/12/2015

ISSN (print): 2169-897X

ISSN (electronic): 2169-8996

Publisher: Wiley-Blackwell Publishing, Inc.


DOI: 10.1002/2015JD024255


Altmetrics provided by Altmetric