Browse by author
Lookup NU author(s): Dr Jianliang Ou, Professor Jon MillsORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
The mosaicking of Unmanned Aerial Vehicle (UAV) imagery usually requires information from additional sensors, such as Global Position System (GPS) and Inertial Measurement Unit (IMU), to facilitate direct orientation, or 3D reconstruction approaches (e.g., structure-from-motion) to recover the camera poses. In this paper, we propose a novel mosaicking method for UAV imagery in which neither direct nor indirect orientation procedures are required. Inspired by the embedded deformation model, a widely used non-rigid mesh deformation model, we present a novel objective function for image mosaicking. Firstly, we construct a feature correspondence energy term that minimizes the sum of the squared distances between matched feature pairs to align the images geometrically. Secondly, we model a regularization term that constrains the image transformation parameters directly by keeping all transformations as rigid as possible to avoid global distortion in the final mosaic. Experimental results presented herein demonstrate that the accuracy of our method is twice as high as an existing (purely image-based) approach, with the associated benefits of significantly faster processing times and improved robustness with respect to reference image selection.
Author(s): Xu Y, Ou J, He H, Zhang X, Mills J
Publication type: Article
Publication status: Published
Journal: Remote Sensing
Year: 2016
Volume: 8
Issue: 3
Pages: 16
Online publication date: 02/03/2016
Acceptance date: 17/02/2016
Date deposited: 02/03/2016
ISSN (electronic): 2072-4292
Publisher: MDPI
URL: http://dx.doi.org/ 10.3390/rs8030204
DOI: 10.3390/rs8030204
Altmetrics provided by Altmetric