Toggle Main Menu Toggle Search

Open Access padlockePrints

Understanding persistence to avoid underestimation of collective flood risk

Lookup NU author(s): Dr Francesco Serinaldi, Professor Chris Kilsby

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

The assessment of collective risk for flood risk management requires a better understanding of the space-time characteristics of flood magnitude and occurrence. In particular, classic formulation of collective risk implies hypotheses concerning the independence of intensity and number of events over fixed time windows that are unlikely to be tenable in real-world hydroclimatic processes exhibiting persistence. In this study, we investigate the links between the serial correlation properties of 473 daily stream flow time series across the major river basins in Europe, and the characteristics of over-threshold events which are used as proxies for the estimation of collective risk. The aim is to understand if some key features of the daily stream flow data can be used to infer properties of extreme events making a more efficient and effective use of the available data. Using benchmark theoretical processes such as Hurst-Kolmogorov (HK), generalized HK (gHK), autoregressive fractionally integrated moving average (ARFIMA) models, and Fourier surrogate data preserving second order linear moments, our findings confirm and expand some results previously reported in the literature, namely: (1) the interplay between short range dependence (SRD) and long range dependence (LRD) can explain the majority of the serial dependence structure of deseasonalized data, but losing information on nonlinear dynamics; (2) the standardized return intervals between over-threshold values exhibit a sub-exponential Weibull-like distribution, implying a higher frequency of return intervals longer than expected under independence, and expected return intervals depending on the previous return intervals; this results in a tendency to observe short (long) inter-arrival times after short (long) inter-arrival times; (3) as the average intensity and the number of events over one-year time windows are not independent, years with larger events are also the more active in terms of number of events; and (4) persistence influences the distribution of the collective risk producing a spike of probability at zero, which describes the probability of years with no events, and a heavier upper tail, suggesting a probability of more extreme annual losses higher than expected under independence. These results provide new insights into the clustering of stream flow extremes, paving the way for more reliable simulation procedures of flood event sets to be used in flood risk management strategies.


Publication metadata

Author(s): Serinaldi F, Kilsby CG

Publication type: Article

Publication status: Published

Journal: Water

Year: 2016

Volume: 8

Issue: 4

Online publication date: 15/04/2016

Acceptance date: 31/03/2016

Date deposited: 15/04/2016

ISSN (electronic): 2073-4441

Publisher: MDPI AG

URL: http://dx.doi.org/10.3390/w8040152

DOI: 10.3390/w8040152


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
Willis Research Network
EP/K013513/1Engineering and Physical Sciences Research Council (EPSRC)

Share