Browse by author
Lookup NU author(s): Professor Phillip WrightORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Background: Clostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin-cellulose-hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone-butanol-ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome.Results: Our results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L-1 of lignin led to delay and decreased solvents production (ethanol; 0.47 g L-1 for cellobiose and 0.27 g L-1 for cellobiose plus lignin and butanol; 0.13 g L-1 for cellobiose and 0.04 g L-1 for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up-or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology.Conclusions: This is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin.
Author(s): Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC
Publication type: Article
Publication status: Published
Journal: Biotechnology for Biofuels
Year: 2016
Volume: 9
Online publication date: 31/05/2016
Acceptance date: 09/05/2016
Date deposited: 22/07/2016
ISSN (print): 1754-6834
Publisher: BioMed Central Ltd.
URL: http://dx.doi.org/10.1186/s13068-016-0523-0
DOI: 10.1186/s13068-016-0523-0
Altmetrics provided by Altmetric