Browse by author
Lookup NU author(s): Dr Sanem Acikalin CartignyORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
It is commonly accepted that the mass extinction associated with the Cretaceous–Paleogene (K–Pg) boundary (∼ 66 Ma) is related to the environmental effects of a large extraterrestrial impact. The biological and oceanographic consequences of the mass extinction are, however, still poorly understood. According to the Living Ocean model, the biological crisis at the K–Pg boundary resulted in a long-term reduction of export productivity in the early Paleocene. Here, we combine organic-walled dinoflagellate cyst (dinocyst) and benthic foraminiferal analyses to provide new insights into changes in the coupling of pelagic and benthic ecosystems. To this end, we perform dinocyst and benthic foraminiferal analyses on the recently discovered Tethyan K–Pg boundary section at Okçular, Turkey, and compare the results with other K–Pg boundary sites in the Tethys. The post-impact dominance of epibenthic morphotypes and an increase of inferred heterotrophic dinocysts in the early Paleocene at Okçular are consistent with published records from other western Tethyan sites. Together, these records indicate that during the early Paleocene more nutrients remained available for the Tethyan planktonic community, whereas benthic communities were deprived of food. Hence, in the post-impact phase the reduction of export productivity likely resulted in enhanced recycling of nutrients in the upper part of the water column, all along the western Tethyan margins.
Author(s): Vellekoop J, Woelders L, Acikalin S, Smit J, van de Schootbrugge B, Yilmaz IÖ, Brinkhuis H, Speijer PR
Publication type: Article
Publication status: Published
Journal: Biogeosciences
Year: 2017
Volume: 14
Pages: 885-900
Online publication date: 27/02/2017
Acceptance date: 26/01/2017
Date deposited: 09/03/2017
ISSN (electronic): 1726-4189
Publisher: Copernicus GmbH
URL: https://doi.org/10.5194/bg-14-885-2017
DOI: 10.5194/bg-14-885-2017
Altmetrics provided by Altmetric