Browse by author
Lookup NU author(s): Dr Girish Viswanathan
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0 degrees, 30 degrees, 60 degrees, 90 degrees and 120 degrees). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0 degrees and 120 degrees respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
Author(s): Govindaraju K, Viswanathan GN, Badruddin IA, Kamangar S, Ahmed NJS, Al-Rashed AAAA
Publication type: Article
Publication status: Published
Journal: Computer Methods in Biomechanics and Biomedical Engineering
Year: 2016
Volume: 19
Issue: 14
Pages: 1541-1549
Online publication date: 07/04/2016
Acceptance date: 21/03/2016
ISSN (print): 1025-5842
ISSN (electronic): 1476-8259
Publisher: Taylor & Francis
URL: http://dx.doi.org/10.1080/10255842.2016.1170119
DOI: 10.1080/10255842.2016.1170119
Altmetrics provided by Altmetric