Browse by author
Lookup NU author(s): Dr Zhiliang Lin, Professor Longbin Tao
This is the authors' accepted manuscript of an article that has been published in its final definitive form by American Institute of Physics, 2016.
For re-use rights please refer to the publisher's terms and conditions.
A fully nonlinear solution for bi-chromatic progressive waves in water of finite depth in the framework of the homotopy analysis method (HAM) is derived. The bi-chromatic wave field is assumed to be obtained by the nonlinear interaction of two monochromatic wave trains that propagate independently in the same direction before encountering. The equations for the mass, momentum and energy fluxes based on the accurate high-order homotopy series solutions are obtained using a discrete integration and a Fourier series-based fitting. The conservation equations for the mean rates of the mass, momentum and energy fluxes before and after the interaction of the two nonlinear monochromatic wave trains are proposed to establish the relationship between the steady-state bi-chromatic wave field and the two nonlinear monochromatic wave trains. The parametric analysis on and , representing the nonlinearity of the bi-chromatic wave field, is performed to obtain a sufficiently small standard deviation , which is applied to describe the deviation from the conservation state ( ) in terms of the mean rates of the mass, momentum and energy fluxes before and after the interaction. It is demonstrated that very small standard deviation from the conservation state can be achieved. After the interaction, the amplitude of the primary wave with a lower circular frequency is found to decrease; while the one with a higher circular frequency is found to increase. Moreover, the highest horizontal velocity of the water particles underneath the largest wave crest, which is obtained by the nonlinear interaction between the two monochromatic waves, is found to be significantly higher than the linear superposition value of the corresponding velocity of the two monochromatic waves. The present study is helpful to enrich and deepen the understanding with insight to steady-state wave-wave interactions.
Author(s): Liu Z, Lin Z, Tao L
Publication type: Article
Publication status: Published
Journal: Physics of Fluids
Year: 2016
Volume: 28
Issue: 12
Print publication date: 01/12/2016
Online publication date: 08/12/2016
Acceptance date: 15/11/2016
Date deposited: 21/11/2016
ISSN (print): 1070-6631
ISSN (electronic): 1089-7666
Publisher: American Institute of Physics
URL: http://dx.doi.org/10.1063/1.4971252
DOI: 10.1063/1.4971252
Altmetrics provided by Altmetric