Browse by author
Lookup NU author(s): Wael Abd Alaziz, Dr Martin JohnstonORCiD, Dr Stephane Le Goff
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
It is well known that binary error-correcting codes with iterative decoders can achieve near Shannon-limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wireless channels can become degraded due to the presence of burst errors or impulsive noise due to interference. A better performing coding scheme is the class of non-binary codes, which are known to be more effective in correcting burst errors, but interestingly there is no research reported in the literature investigating non-binary codes on impulsive noise channels. In this paper, we investigate the performance of non-binary turbo codes defined in a finite field GF(4) on symmetric alpha-stable impulsive noise channels and compare with comparable binary turbo codes. A Cauchy receiver is also employed to mitigate the effects of the channel to assist the turbo decoding. Our simulation results show that although the non-binary turbo code performs similarly to the binary turbo code on the AWGN channel, it achieves a significant coding gain over the binary turbo code as impulsiveness increases.
Author(s): Abd-Alaziz W, Johnston M, Le Goff S
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)
Year of Conference: 2016
Online publication date: 22/09/2016
Acceptance date: 02/04/2016
ISSN: 9781509025268
Publisher: IEEE
URL: http://dx.doi.org/10.1109/CSNDSP.2016.7574024
DOI: 10.1109/CSNDSP.2016.7574024
Library holdings: Search Newcastle University Library for this item
ISBN: 9781509025275