Toggle Main Menu Toggle Search

Open Access padlockePrints

Investigation of a new bis(carboxylate)triazole-based anchoring ligand for dye-sensitised solar cell chromophore complexes

Lookup NU author(s): Fiona Black, Chris Wood, Professor Elizabeth GibsonORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).


Abstract

A novel anchoring ligand for dye-sensitised solar cell chromophoric complexes, 1-(2,2’-bipyrid-4-yl)-1,2,3-triazole-4,5-dicarboxylic acid (dctzbpy), is described. The new dye complexes [Ru(bpy)2(dctzbpy)][PF6]2 (AS16), [Ir(ppy)2(dctzbpy)][PF6] (AS17) and [Re(dctzbpy)(CO)3Cl] (AS18) were prepared in a two stage procedure with intermediate isolation of their diester analogues, AS16-Et2, AS17-Et2 and AS18-Et2 respectively. Electrochemical analysis of AS16-Et2, AS17-Et2 and AS18-Et2 reveal reduction potentials in the range -1.50 to -1.59 V (vs Fc+/Fc) which are cathodically shifted with respect to that of the model complex [Ru(bpy)2(dcbH2)]2+ (1) (Ered = -1.34 V, dcbH2 = 2,2’-bipyridyl-4,4’dicarboxylic acid). This therefore demonstrates that the LUMO of the complex is correctly positioned for favourable electron transfer into the TiO2 conduction band upon photoexcitation. The higher energy LUMOs for AS16 to AS18 and a larger HOMO-LUMO gap result in blue-shifted absorption spectra and hence reduced light harvesting efficiency relative to their dcbH2 analogues. Preliminary tests on TiO2 n-type and NiO p-type DSSCs have been carried out. In the cases of the Ir(III) and Re(I) based dyes AS17 and AS18 these show inferior performance to their dcbH2 analogues. However, the Ru(II) dye AS16 (h = 0.61 %) exhibits significantly greater efficiency than 1 (h = 0.1 %). In a p-type cell AS16 shows the highest photovoltaic efficiency (h = 0.028 %), almost three times that of cells incorporating the benchmark dye coumarin C343.


Publication metadata

Author(s): Sinopoli A, Black FA, Wood CJ, Gibson EA, Elliott PIP

Publication type: Article

Publication status: Published

Journal: Dalton Transactions

Year: 2017

Volume: 46

Issue: 5

Pages: 1520-1530

Print publication date: 07/02/2017

Online publication date: 05/01/2017

Acceptance date: 03/01/2017

Date deposited: 04/01/2017

ISSN (print): 1477-9226

ISSN (electronic): 1477-9234

Publisher: Royal Society of Chemistry

URL: http://dx.doi.org/10.1039/C6DT02905A

DOI: 10.1039/C6DT02905A


Altmetrics

Altmetrics provided by Altmetric


Share