Toggle Main Menu Toggle Search

Open Access padlockePrints

Forecasting of photovoltaic power using regularized ensemble Extreme Learning Machine

Lookup NU author(s): Tiong Teck Teo, Dr Thillainathan Logenthiran, Dr Wai Lok Woo, Dr Khalid Abidi


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The increasing penetration of renewable energy sources with intermittent nature generation challenges the grid operator to accurately plan and schedule their generators. In this context accurate forecasting model are vital to ensure smooth day-to-day operation with high renewable energy sources. Artificial Neural Network (ANN) have shown promising ability for accurate forecast. The ANN proposed in this paper are trained using historical dataset and training algorithm, Extreme Learning Machine (ELM). ELM requires randomly initialized parameters which affect the forecasting model. This paper propose a method to reduce the randomness of ELM by adding a regularizing term and combining multiple ELM. The ANN is implemented using MATLAB and trained using real-life data. The result shows that the randomness are greatly reduce and has a higher forecasting accuracy than a single ELM.

Publication metadata

Author(s): Teo TT, Logenthiran T, Woo WL, Abidi K

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: 2016 IEEE Region 10 Conference (TENCON)

Year of Conference: 2016

Online publication date: 09/02/2017

Acceptance date: 01/08/2016

ISSN: 2159-3450

Publisher: IEEE


DOI: 10.1109/TENCON.2016.7848040

Library holdings: Search Newcastle University Library for this item

ISBN: 9781509025985