Toggle Main Menu Toggle Search

Open Access padlockePrints

Raman and photoluminescence spectroscopic study of 1-undecene functionalized nanodiamonds

Lookup NU author(s): Yayuk Astuti, Dr Nigel Poolton, Professor Lidija Siller

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Nanodiamond holds great interest in a variety of optical applications, the properties being correlated with surface modification, and the presence of both impurities and defects (contained either on their surface or within the crystal structure). Undecyl-nanodiamond produced by attachment of 1-undecene onto the nanodiamond surface could be a good candidate as a luminescent marker in the future; therefore, understanding of its optical properties is essential. In this work, the optical properties of the acid-purified nanodiamond and undecyl-nanodiamond were characterised using surface enhanced Raman spectroscopy (SERS) and photoluminescence spectroscopy. The results demonstrate that the characteristic diamond Raman signal at 1330 cm-1 was still observed after chemical surface modification, while the signal at ∼1600 cm -1 (attributed to graphite bands) disappeared after the modification. Broad photoluminescence emission is detected in the range 1.5-2.5 eV (500-800 nm), as typically found for isolated nanodiamond; these emission bands became narrower with attachment of 1-undecene as compared to the sample without surface functionalisation. The observed emission could be related to structural disorder on the nanodiamond surface. The temperature dependence of the intensity, peak position and band widths of each sample has been characterised. Copyright © Materials Research Society 2013.


Publication metadata

Author(s): Astuti Y, Poolton NRJ, Siller L

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Nanodiamond - From Basics to Medical and Other Potential Applications (Symposium N at the 2013 JSAP-MRS Joint Symposia)

Year of Conference: 2013

Publisher: Materials Research Society

URL: https://doi.org/10.1557/opl.2013.1189

DOI: 10.1557/opl.2013.1189

Series Title: Materials Research Society Symposium Proceedings


Share