Toggle Main Menu Toggle Search

Open Access padlockePrints

ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix

Lookup NU author(s): Dr Chengyu Liu

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

We propose a systematic ECG quality classification method based on a kernel support vector machine (KSVM) and genetic algorithm (GA) to determine whether ECGs collected via mobile phone are acceptable or not. This method includes mainly three modules, i.e., lead-fall detection, feature extraction, and intelligent classification. First, lead-fall detection is executed to make the initial classification. Then the power spectrum, baseline drifts, amplitude difference, and other time-domain features for ECGs are analyzed and quantified to form the feature matrix. Finally, the feature matrix is assessed using KSVM and GA to determine the ECG quality classification results. A Gaussian radial basis function (GRBF) is employed as the kernel function of KSVM and its performance is compared with that of the Mexican hat wavelet function (MHWF). GA is used to determine the optimal parameters of the KSVM classifier and its performance is compared with that of the grid search (GS) method. The performance of the proposed method was tested on a database from PhysioNet/Computing in Cardiology Challenge 2011, which includes 1500 12-lead ECG recordings. True positive (TP), false positive (FP), and classification accuracy were used as the assessment indices. For training database set A (1000 recordings), the optimal results were obtained using the combination of lead-fall, GA, and GRBF methods, and the corresponding results were: TP 92.89%, FP 5.68%, and classification accuracy 94.00%. For test database set B (500 recordings), the optimal results were also obtained using the combination of lead-fall, GA, and GRBF methods, and the classification accuracy was 91.80%. © 2014 Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg.


Publication metadata

Author(s): Zhang Y-T, Liu C-Y, Wei S-S, Wei C-Z, Liu F-F

Publication type: Article

Publication status: Published

Journal: Journal of Zhejiang University: Science C

Year: 2014

Volume: 15

Issue: 7

Pages: 564-573

Online publication date: 12/07/2014

Acceptance date: 06/03/2014

ISSN (print): 1869-1951

ISSN (electronic): 1869-196X

Publisher: Zhejiang University

URL: https://doi.org/10.1631/jzus.C1300264

DOI: 10.1631/jzus.C1300264


Altmetrics

Altmetrics provided by Altmetric


Share