Browse by author
Lookup NU author(s): Dr Peter Michalak, Dr Sarah Heaps, Professor Mike TrenellORCiD, Professor Paul WatsonORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2016 ACM. The growth in the number of Internet of Things (IoT) devices and applications, and an increase in the capabilities of sensors creates an opportunity to optimise IoT applications by partitioning the computation across all components in the processing chain: sensors, field gateways and clouds. This can be done to optimise a range of factors including performance, energy and cost. This paper presents an overview of an optimiser designed to achieve this. It takes as input a high-level, declarative description of the computation, along with a set of non-functional requirements. From this it aims to generate the best deployment plan. The main use case, described in the paper is the use of wearable sensors for the real-time monitoring of the activity and glucose levels of type II diabetes patients. This paper describes the architecture of the optimiser, gives an example of an energy-based cost model, and shows how the approach applies to the diabetes use case.
Author(s): Michalák P, Heaps S, Trenell M, Watson P
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: DEBS 2016 - Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems
Year of Conference: 2016
Pages: 434-437
Online publication date: 20/06/2016
Acceptance date: 02/04/2016
Publisher: Association for Computing Machinery, Inc
URL: https://doi.org/10.1145/2933267.2933435
DOI: 10.1145/2933267.2933435
Library holdings: Search Newcastle University Library for this item
ISBN: 9781450340212