Toggle Main Menu Toggle Search

Open Access padlockePrints

Structure and Function of the Stressosome Signalling Hub

Lookup NU author(s): Professor Rick Lewis, Dr Jon Marles-WrightORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© Springer International Publishing Switzerland 2017. The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.

Publication metadata

Author(s): Pane-Farre J, Quin MB, Lewis RJ, Marles-Wright J

Publication type: Book Chapter

Publication status: Published

Book Title: Macromolecular Protein Complexes

Year: 2017

Volume: 83

Pages: 1-41

Print publication date: 07/03/2017

Acceptance date: 02/04/2016

Edition: 1

Series Title: Subcellular Biochemistry

Publisher: Springer New York


DOI: 10.1007/978-3-319-46503-6_1