Browse by author
Lookup NU author(s): Dr Julien EngORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2017 Elsevier B.V. In this work, a general, user-friendly method - ab initio ligand field theory (AILFT), is described and illustrated. AILFT allows one to unambiguously extract all ligand field parameters (the ligand field one-electron matrix VLFT , the Racah parameters B and C, and the spin-orbit coupling parameter ζ) from relatively straightforward multi-reference ab initio calculations. The method applies to mononuclear complexes in dn or fn configurations. The method is illustrated using complete active space self-consistent field (CASSCF) and N-electron valence perturbation theory (NEVPT2) calculations on a series of well documented octahedral complexes of CrIII with simple ligands such as F-, Cl-, Br-, I-, NH3 and CN-. It is shown that all well-known trends for the value of 10Dq (the spectrochemical series) are faithfully reproduced by AILFT. By comparison of B and ζ for CrIII in these complexes with the parameters calculated for the free ion Cr3+, the covalency of the Cr-ligand bond can be assessed quantitatively (the non-relativistic and relativistic nephelauxetic effects). The variation of ligand field parameters for complexes of 3d, 4d and 5d elements is studied using MCl6 3- (M=CrIII, MoIII, WIII) as model examples. As reflected in variations of 10Dq, B and ζ across this series, metal-ligand covalency increases from CrCl6 3- to MoCl6 3- to WCl6 3-. Using the angular overlap model, the one-electron parameters of the ligand field matrix are decomposed into increments for σ- and π- metal-ligand interactions. This allows for the quantification of variations in σ- and π-ligand donor properties of these ligands. Using these results, the well documented two-dimensional spectroscopic series for complexes of CrIII is quantitatively reproduced. Comparison of the results obtained using CASSCF and NEVPT2 reveals the importance of dynamic electron correlation. Finally, the limitations of the AILFT method for complexes with increasing metal-ligand covalency are analyzed and discussed.
Author(s): Singh SK, Eng J, Atanasov M, Neese F
Publication type: Article
Publication status: Published
Journal: Coordination Chemistry Reviews
Year: 2017
Volume: 344
Pages: 2-25
Print publication date: 01/08/2017
Online publication date: 31/03/2017
Acceptance date: 24/03/2017
ISSN (print): 0010-8545
Publisher: Elsevier BV
URL: https://doi.org/10.1016/j.ccr.2017.03.018
DOI: 10.1016/j.ccr.2017.03.018
Altmetrics provided by Altmetric