Browse by author
Lookup NU author(s): Dr Long Jiang, Professor Tony Roskilly, Dr Yiji LuORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
© 2017 Elsevier Ltd Innovative modular sorption and resorption thermal cell are presented for cold and heat cogeneration. Expanded natural graphite treated with sulfuric acid is selected in the development of composite sorbents for improved heat and mass transfer performance. It is indicated that thermal conductivity and permeability range from 11.9 W m−1 K−1 to 36.5 W m−1 K−1 and from 1.04 × 10−14 m2 to 8.02 × 10−11 m2. Sorption characteristics of composite sorbents are also investigated. Results demonstrate that MnCl2-CaCl2-NH3 reveals the best sorption performance under the condition of 130–150 °C heat source temperature and −20 °C to 5 °C evaporation temperature. Sorption quantities of sorption and resorption working pairs range from 0.169 kg kg−1 to 0.499 kg kg−1. Based on testing results, energy density and power density of modular resorption thermal cell are compared with that of sorption thermal cell. Results indicate that heat density ranges from 580 kJ kg−1 to 1368 kJ kg−1 whereas cold density ranges from 400 kJ kg−1 to 1134 kJ kg−1. Simultaneously, heat and cold power density range from 322 W kg−1 to 1502 W kg−1 and from 222 W kg−1 to 946 W kg−1. Both sorption and resorption thermal cell have their own advantages, which are flexible connected for scaling applications.
Author(s): Jiang L, Roskilly AP, Wang RZ, Wang LW, Lu YJ
Publication type: Article
Publication status: Published
Journal: Applied Energy
Year: 2017
Volume: 204
Pages: 767-779
Print publication date: 15/10/2017
Online publication date: 01/08/2017
Acceptance date: 15/07/2017
Date deposited: 14/08/2017
ISSN (print): 0306-2619
Publisher: Elsevier Ltd
URL: https://doi.org/10.1016/j.apenergy.2017.07.041
DOI: 10.1016/j.apenergy.2017.07.041
Altmetrics provided by Altmetric