Toggle Main Menu Toggle Search

Open Access padlockePrints

Axonal protein synthesis and the regulation of primary afferent function

Lookup NU author(s): Dr Ilona Obara



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Local protein synthesis has been demonstrated in the peripheral processes of sensory primary afferents and is thought to contribute to the maintenance of the neuron, to neuronal plasticity following injury and also to regeneration of the axon after damage to the nerve. The mammalian target of rapamycin (mTOR), a master regulator of protein synthesis, integrates a variety of cues that regulate cellular homeostasis and is thought to play a key role in coordinating the neuronal response to environmental challenges. Evidence suggests that activated mTOR is expressed by peripheral nerve fibers, principally by A-nociceptors that rapidly signal noxious stimulation to the central nervous system, but also by a subset of fibers that respond to cold and itch. Inhibition of mTOR complex 1 (mTORC1) has shown that while the acute response to noxious stimulation is unaffected, more complex aspects of pain processing including the setting up and maintenance of chronic pain states can be disrupted suggesting a route for the generation of new drugs for the control of chronic pain. Given the role of mTORC1 in cellular homeostasis, it seems that systemic changes in the physiological state of the body such as occur during illness are likely to modulate the sensitivity of peripheral sensory afferents through mTORC1 signaling pathways. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

Publication metadata

Author(s): Obara I, Hunt SP

Publication type: Article

Publication status: Published

Journal: Developmental Neurobiology

Year: 2014

Volume: 74

Issue: 3

Pages: 269-278

Print publication date: 01/03/2014

Online publication date: 08/11/2013

Acceptance date: 15/09/2013

Date deposited: 01/09/2017

ISSN (print): 1932-8451

ISSN (electronic): 1097-4695

Publisher: Wiley


DOI: 10.1002/dneu.22133

PubMed id: 24085547


Altmetrics provided by Altmetric


Funder referenceFunder name