Browse by author
Lookup NU author(s): Dr Elizabeth Heidrich, Dr Jan DolfingORCiD, Dr Matthew WadeORCiD, Professor William Sloan, Professor Thomas CurtisORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5 °C) versus cold (7.5 °C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q10: 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures.
Author(s): Heidrich ES, Dolfing J, Wade MJ, Sloan WT, Quince C, Curtis TP
Publication type: Article
Publication status: Published
Journal: Bioelectrochemistry
Year: 2018
Volume: 119
Pages: 43-50
Print publication date: 01/02/2018
Online publication date: 22/07/2017
Acceptance date: 14/07/2017
Date deposited: 27/09/2017
ISSN (print): 1567-5394
ISSN (electronic): 1878-562X
Publisher: Elsevier
URL: http://doi.org/10.1016/j.bioelechem.2017.07.006
DOI: 10.1016/j.bioelechem.2017.07.006
Altmetrics provided by Altmetric