Toggle Main Menu Toggle Search

Open Access padlockePrints

Interstitial Water Geochemistry and Low Temperature Alteration in Volcaniclastic Sediments from the Amami Sankaku Basin at IODP Site U1438 (Expedition 351)

Lookup NU author(s): Dr Cees van der Land

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).


Publication metadata

Author(s): Loudin LC, Yogodzinski GM, Sena C, van der Land C, Zhang Z, Marsaglia KM, Meffre S

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: AGU Fall Meeting

Year of Conference: 2014

Print publication date: 15/12/2014

Acceptance date: 15/12/2014

Publisher: American Geophysical Union


Share