Toggle Main Menu Toggle Search

Open Access padlockePrints

A higher-order coupling model of the blades of the floating offshore wind turbine

Lookup NU author(s): Professor Zhiqiang Hu


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 2017 Taylor & Francis Group, London. In recent decades, it has been found that stiffness of flexible bodies can be increased under the circumstance of large overall motions. But the conventional hybrid-coordinate dynamical model can’t reflect this dynamic stiffening effect clearly enough. Since the slender blades of the floating offshore wind turbine usually work with high rotation-speed, the dynamic stiffening effect of flexible blades should be taken into consideration. In this paper, a higher-order coupling model is proposed and then incorporated into an in-house program, DARwind, to investigate dynamic stiffening characteristics of the blades and its effects on a spar-type floating offshore wind turbine. It is found that the additional stiffness of slender blades increases with the augment of the rotating speed in the higher-order coupling model. Furthermore, dynamic characteristics of the spar-type floating offshore wind turbine in the higher-order coupling model are different with those obtained by the traditional hybrid-coordinate dynamical model.

Publication metadata

Author(s): Chen J, Hu Z

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Progress in the Analysis and Design of Marine Structures: Proceedings of the 6th International Conference on Marine Structures (MARSTRUCT 2017)

Year of Conference: 2017

Pages: 879-888

Online publication date: 24/04/2017

Acceptance date: 02/04/2016

Publisher: CRC Press/Balkema


DOI: 10.1201/9781315157368-99

Library holdings: Search Newcastle University Library for this item

ISBN: 9781138069077