Toggle Main Menu Toggle Search

Open Access padlockePrints

Condition-Based Maintenance of Naval Propulsion Systems with supervised Data Analysis

Lookup NU author(s): Dr Andrea Coraddu, Dr Alan J Murphy



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).


© 2017 Elsevier Ltd The behavior and interaction of the main components of Ship Propulsion Systems cannot be easily modeled with a priori physical knowledge, considering the large amount of variables influencing them. Data-Driven Models (DDMs), instead, exploit advanced statistical techniques to build models directly on the large amount of historical data collected by on-board automation systems, without requiring any a priori knowledge. DDMs are extremely useful when it comes to continuously monitoring the propulsion equipment and take decisions based on the actual condition of the propulsion plant. In this paper, the authors investigate the problem of performing Condition-Based Maintenance through the use of DDMs. In order to conceive this purpose, several state-of-the-art supervised learning techniques are adopted, which require labeled sensor data in order to be deployed. A naval vessel, characterized by a combined diesel-electric and gas propulsion plant, has been exploited to collect such data and show the effectiveness of the proposed approaches. Because of confidentiality constraints with the Navy the authors used a real-data validated simulator and the dataset has been published for free use through the UCI repository.

Publication metadata

Author(s): Cipollini F, Oneto L, Coraddu A, Murphy AJ, Anguita D

Publication type: Review

Publication status: Published

Journal: Ocean Engineering

Year: 2018

Volume: 149

Pages: 268-278

Print publication date: 01/02/2018

Online publication date: 27/12/2017

Acceptance date: 03/12/2017

ISSN (print): 0029-8018

ISSN (electronic): 1873-5258

Publisher: Elsevier Ltd


DOI: 10.1016/j.oceaneng.2017.12.002