Toggle Main Menu Toggle Search

Open Access padlockePrints

Exploration of the material property space for chemical looping air separation applied to carbon capture and storage

Lookup NU author(s): Dr Wenting HuORCiD



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


© 2017 Oxy-fuel combustion is one route to large scale carbon capture and storage. Fuel is combusted in oxygen rather than air, allowing pure CO2 to be captured and sequestered. Currently, the required oxygen is produced via cryogenic air separation, which imposes a significant energy penalty. Chemical looping air separation (CLAS) is an alternative process for the production of oxygen, and relies on the repeated oxidation and reduction of solid oxygen carriers (typically metal oxides). The energy efficiency is governed by the thermodynamic properties of the oxygen carrier material, and how well the CLAS process can be heat-integrated with the process consuming oxygen. In this study, key thermodynamic properties have been identified and assessed using a steady state model of a CLAS-oxy-fuel power plant. It is demonstrated that energy penalties as low as 1.5 percentage points can be obtained for a narrow range of material properties. Based on density functional theory calculations, 14 oxygen carrier systems, which are novel or have received little attention, have been identified that could potentially achieve this minimal energy penalty.

Publication metadata

Author(s): Gorke RH, Hu W, Dunstan MT, Dennis JS, Scott SA

Publication type: Article

Publication status: Published

Journal: Applied Energy

Year: 2018

Volume: 212

Pages: 478-488

Print publication date: 15/02/2018

Online publication date: 22/12/2017

Acceptance date: 18/11/2017

Date deposited: 09/01/2018

ISSN (print): 0306-2619

ISSN (electronic): 1872-9118

Publisher: Elsevier Ltd


DOI: 10.1016/j.apenergy.2017.11.083


Altmetrics provided by Altmetric


Funder referenceFunder name