Toggle Main Menu Toggle Search

Open Access padlockePrints

Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

Lookup NU author(s): Dr Miguel Morales Maqueda, Dr Alex Megann



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


© 2017 Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

Publication metadata

Author(s): Barnes JM, Morales Maqueda MA, Polton JA, Megann AP

Publication type: Article

Publication status: Published

Journal: Ocean Modelling

Year: 2018

Volume: 122

Pages: 26-35

Print publication date: 01/02/2018

Online publication date: 23/12/2017

Acceptance date: 21/12/2017

Date deposited: 30/01/2018

ISSN (print): 1463-5003

ISSN (electronic): 1463-5011

Publisher: Elsevier Ltd


DOI: 10.1016/j.ocemod.2017.12.005


Altmetrics provided by Altmetric


Find at Newcastle University icon    Link to this publication