Browse by author
Lookup NU author(s): Professor Peter TaylorORCiD, Nishant Sinha, Professor Yujiang WangORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
BackgroundTemporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome.MethodsWe used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks.ResultsTemporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole.ConclusionOur results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only.
Author(s): Taylor PN, Sinha N, Wang Y, Vos SB, deTisi J, Miserocchi A, McEvoy AW, Winston GP, Duncan JS
Publication type: Article
Publication status: Published
Journal: NeuroImage: Clinical
Year: 2018
Volume: 18
Pages: 202-214
Print publication date: 28/02/2018
Online publication date: 31/01/2018
Acceptance date: 21/01/2018
Date deposited: 28/02/2018
ISSN (electronic): 2213-1582
Publisher: Elsevier
URL: https://doi.org/10.1016/j.nicl.2018.01.028
DOI: 10.1016/j.nicl.2018.01.028
Altmetrics provided by Altmetric