Toggle Main Menu Toggle Search

Open Access padlockePrints

A computationally efficient method for calculation of strand eddy current losses in electric machines

Lookup NU author(s): Dr Rafal Wrobel


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 2016 IEEE. In this paper, a fast finite element (FE)-based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines with a focus on fractional slot concentrated winding (FSCW) permanent magnet (PM) machines will be presented. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions which exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor, sf, for all the design variations, the maximum sf in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. The research focus of the paper is placed on development of a computationally efficient technique for the ac winding loss derivation applicable in design-optimization, where both the electromagnetic and thermal machine behavior are accounted for. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winging loss effects for a particular machine design, a subject which has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation results.

Publication metadata

Author(s): Fatemi A, Ionel DM, Demerdash NAO, Staton DA, Wrobel R, Chong YC

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings

Year of Conference: 2016

Online publication date: 16/02/2017

Acceptance date: 18/09/2016

Publisher: Institute of Electrical and Electronics Engineers Inc.


DOI: 10.1109/ECCE.2016.7854667

Library holdings: Search Newcastle University Library for this item

ISBN: 9781509007370