Browse by author
Lookup NU author(s): Dr Anurag Sharma
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© The Institution of Engineering and Technology 2018. Distribution networks are evolving into active meshed networks with bidirectional power flow as the penetration of distributed generation (DG) sources is increasing. This necessitates the use of directional relaying schemes in these emerging active distribution networks. However, conventional directional overcurrent (OC) protection will not be adequate to protect these networks against the stochastic nature of renewable DGs and the changing network architectures. Hence, this study proposes an adaptive directional OC relay algorithm that determines optimal protection settings according to varying fault currents and paths induced by the DGs in active meshed distribution networks. The proposed algorithm consists of a two-phase approach that deduces: (i) optimal floating current settings through a fuzzy decision-making module, and (ii) optimal floating time settings through an optimisation algorithm. Extensive case studies are implemented on the modified power distribution networks of IEEE 14-bus and IEEE 30-bus by varying the type, location, and size of DGs. The results validate the ability of the proposed protection scheme to capture the uncertainties of the DGs and determine optimal protection settings, while ensuring minimal operating time.
Author(s): Kumar DS, Srinivasan D, Sharma A, Reindl T
Publication type: Article
Publication status: Published
Journal: IET Generation, Transmission and Distribution
Year: 2018
Volume: 12
Issue: 13
Pages: 3212-3220
Online publication date: 19/07/2018
Acceptance date: 02/04/2018
ISSN (print): 1751-8687
ISSN (electronic): 1751-8695
Publisher: Institution of Engineering and Technology
URL: https://doi.org/10.1049/iet-gtd.2017.1279
DOI: 10.1049/iet-gtd.2017.1279
Altmetrics provided by Altmetric