Browse by author
Lookup NU author(s): Professor Marloes PeetersORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2018 Elsevier B.V. Molecularly Imprinted Polymers (MIPs) are synthesized for the selective detection of caffeine. The polymerization process, monomer and crosslinker monomer composition are varied to determine the optimal synthesis procedure via batch rebinding experiments evaluated with optical detection. The selectivity is tested by comparing the response of caffeine to compounds with similar chemical structures (theophylline and theobromine) and dopamine, another neurotransmitter. Subsequently, the MIP polymer particles are integrated into bulk modified MIP screen-printed electrodes (MIP-modified SPEs). The sensors are used to measure caffeine content in various samples employing the Heat-Transfer Method (HTM), a low-cost and simple thermal detection method that is based on differences in thermal resistance at the solid-liquid interface. At first, the noise is minimized by adjusting the settings of temperature feedback loop. Second, the response of the MIP-modified SPE is studied at various temperatures ranging from 37 to 50 and 85 °C. The binding to MIP-modified SPEs has never been studied at elevated temperatures since most biomolecules are not stable at those temperatures. Using caffeine as proof-of-concept, it is demonstrated that at 85 °C the detection limit is significantly enhanced due to higher signal to noise ratios and enhanced diffusion of the biomolecule. Thermal wave transport analysis (TWTA) is also optimized at 85 °C producing a limit of detection of ∼1 nM. Next, MIP-modified SPEs are used to measure the caffeine concentration in complex samples including caffeinated beverages, spiked tap water and waste water samples. The use of MIP-modified SPEs combined with thermal detection provides sensors that can be used for fast and low-cost detection performed on-site, which holds great potential for the determination of contaminants in environmental samples. The platform is generic and by adapting the MIP layer, we can expand to this a range of relevant targets.
Author(s): Betlem K, Mahmood I, Seixas RD, Sadiki I, Raimbault RLD, Foster CW, Crapnell RD, Tedesco S, Banks CE, Gruber J, Peeters M
Publication type: Article
Publication status: Published
Journal: Chemical Engineering Journal
Year: 2019
Volume: 359
Pages: 505-517
Print publication date: 01/03/2019
Online publication date: 15/11/2018
Acceptance date: 15/11/2018
ISSN (print): 1385-8947
ISSN (electronic): 1873-3212
Publisher: Elsevier BV
URL: https://doi.org/10.1016/j.cej.2018.11.114
DOI: 10.1016/j.cej.2018.11.114
Altmetrics provided by Altmetric