Browse by author
Lookup NU author(s): Professor Deborah HendersonORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2019, The Author(s). The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKO Δ/Δ glands display normal branching while Vangl2 flox/flox and Vangl2 Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2 flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2 Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2 Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2 flox/flox and Vangl2 Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.
Author(s): Smith P, Godde N, Rubio S, Tekeste M, Vladar EK, Axelrod JD, Henderson DJ, Milgrom-Hoffman M, Humbert PO, Hinck L
Publication type: Article
Publication status: Published
Journal: Scientific Reports
Year: 2019
Volume: 9
Issue: 1
Online publication date: 08/05/2019
Acceptance date: 06/12/2018
Date deposited: 29/05/2019
ISSN (electronic): 2045-2322
Publisher: Nature Publishing Group
URL: https://doi.org/10.1038/s41598-019-43444-8
DOI: 10.1038/s41598-019-43444-8
PubMed id: 31068622
Altmetrics provided by Altmetric