Toggle Main Menu Toggle Search

Open Access padlockePrints

A novel versatile animal-free 3D tool for rapid low-cost assessment of immunodiagnostic microneedles

Lookup NU author(s): Dr Keng Wooi NgORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).


Abstract

Microneedle devices offer minimally invasive and rapid biomarker extraction from the skin. However, the lack of effective assessment tools for such microneedle devices can delay their development into useful clinical applications. Traditionally, the microneedle performance is evaluated i) in vivo, using animal models, ii) ex vivo, on excised human or animal skin or iii) in vitro, using homogenised solutions with the target antigen to model the interstitial fluid. In vivo and ex vivo models are considered the gold-standard approach for the evaluation of microneedle devices because of their structural composition, however they do exhibit limitations. More specifically, they have limited availability and they present batch-to-batch variations depending on the skin origin. Furthermore, their use rises ethical concerns regarding compliance with the globally accepted 3Rs principle of reducing the use of animals for research purposes. At the same time, in vitro models fail to accurately mimic the structure and the mechanical integrity of the skin tissue that surrounds the interstitial fluid. In this study, we introduce for the first time an animal-free, mechanically robust, 3D scaffold that has great potential as an accurate in vitro evaluation tool for immunodiagnostic microneedle devices. More specifically, we demonstrate, for the first time, successful extraction and detection of a melanoma biomarker (S100B) using immunodiagnostic microneedles in the 3D culture system. Melanoma cells (A375) were cultured and expanded for 35 days in the highly porous polymeric scaffold followed by in situ capture of S100B with the microneedle device. Scanning electron microscopy showed a close resemblance between the 3D scaffold and human skin in terms of internal structure and porosity. The microneedle device detected S100B in the scaffold (with a detection pattern similar to the positive controls), while the biomarker was not detected in the surrounding liquid supernatants. Our findings demonstrate the great potential of this animal-free 3D tool for rapid and low-cost evaluation of microneedle devices.


Publication metadata

Author(s): Totti S, Ng KW, Dale L, Lian G, Chen T, Velliou E

Publication type: Article

Publication status: Published

Journal: Sensors and Actuators: B. Chemical

Year: 2019

Volume: 296

Print publication date: 01/10/2019

Online publication date: 03/06/2019

Acceptance date: 02/06/2019

Date deposited: 08/06/2019

ISSN (print): 0925-4005

ISSN (electronic): 1873-3077

Publisher: Elsevier BV

URL: https://doi.org/10.1016/j.snb.2019.126652

DOI: 10.1016/j.snb.2019.126652


Altmetrics

Altmetrics provided by Altmetric


Share