Browse by author
Lookup NU author(s): Dr Julien EngORCiD, Dr Jerry Hagon, Professor Thomas Penfold
This is the authors' accepted manuscript of an article that has been published in its final definitive form by Royal Society of Chemistry, 2019.
For re-use rights please refer to the publisher's terms and conditions.
The triplet harvesting rate in purely organic materials based upon Thermally Activated Delayed Fluorescence (TADF) is critically important for achieving high performance Organic Light Emitting Diodes (OLEDs). One of the major challenges that must be overcome in these materials is the weak spin orbit coupling which can lead to triplet harvesting rates that extend into the millisecond range. This causes poor roll-off in device efficiency at higher current densities. In this work, we study the excited state properties of a new TADF design strategy based upon the D-A3 approach. Using TAT-3DBTO2, composed of a rigid triazatruxene donor core with three dibenzothiophene-S,S-dioxide peripheral acceptors, we explain how exploiting the high density of excited states and low lying conical intersections associated with this structure can achieve high-rates of triplet harvesting. However, we also demonstrate that excited state structural changes reduce the sym- metry of the molecule and work against high triplet harvesting rates by causing localisation of the excited state electronic structure and non-equivalence between the acceptors. Consequently, the fast initial reverse intersystem crossing (rISC) channels are replaced by undesirable slower rISC channels. Our results imply that it will be possible to engineer molecules where undesirable decay pathways are removed giving new perspectives for designing functional TADF molecules.
Author(s): Eng J, Hagon J, Penfold TJ
Publication type: Article
Publication status: Published
Journal: Journal of Materials Chemistry C
Year: 2019
Volume: 7
Issue: 41
Pages: 12942-12952
Online publication date: 10/07/2019
Acceptance date: 09/07/2019
Date deposited: 10/07/2019
ISSN (print): 2050-7526
ISSN (electronic): 2050-7534
Publisher: Royal Society of Chemistry
URL: https://doi.org/10.1039/C9TC02561H
DOI: 10.1039/C9TC02561H
Altmetrics provided by Altmetric