Browse by author
Lookup NU author(s): Dr Magda CarrORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Experimental evidence is presented in support of the theoretical prediction of Diamessis and Redekopp [J. Phys. Oceanogr. 36, 784 (2006)] for wave-induced vortex shedding at the lower solid boundary of a stratified fluid system as a result of global instability. The time-dependent boundary layer induced by a strongly nonlinear internal wave of depression in shallow water is examined experimentally. Measurements of the velocity field close to the bottom boundary illustrate coherent periodic shedding of vortex structures at the lower boundary in the adverse pressure gradient region aft of the wave. The vortical structures ascend high into the water column and cause significant benthic turbulence. It is shown that global instability has a critical threshold dependent on the Reynolds number of the flow and the amplitude of the wave. The critical amplitudes observed are approximately half that predicted by Diamessis and Redekopp [J. Phys. Oceanogr. 36, 784 (2006)], indicating that internal wave-induced benthic mixing may be even more prominent than previously thought. © 2008 American Institute of Physics.
Author(s): Carr M, Davies PA, Shivaram P
Publication type: Article
Publication status: Published
Journal: Physics of Fluids
Year: 2008
Volume: 20
Issue: 6
Online publication date: 24/06/2008
ISSN (print): 1070-6631
ISSN (electronic): 1089-7666
Publisher: American Institute of Physics Inc.
URL: https://doi.org/10.1063/1.2931693
DOI: 10.1063/1.2931693
Altmetrics provided by Altmetric