Browse by author
Lookup NU author(s): Dr Thomas Northey, Professor Thomas Penfold
This is the authors' accepted manuscript of an article that has been published in its final definitive form by Royal Society of Chemistry, 2019.
For re-use rights please refer to the publisher's terms and conditions.
The emergence of X-ray free electron lasers (X-FELs) has made it possible to probe structural dynamics on the femtosecond timescale. This extension of experimental capabilities also calls for a simultaneous development in theory to help interpret the underlying structure and dynamics encoded within the experimental observable. In the ultrafast regime this often requires a time- dependent theoretical treatment that describes nuclear dynamics beyond the Born-Oppenheimer approximation. In this work, we perform quantum dynamics simulations based upon time-evolving Gaussian basis functions (GBFs) and simulate the ultrafast X-ray Absorption Near-Edge Structure (XANES) spectra of photoexcited pyrazine including two strongly coupled electronically excited states and four normal mode degrees of freedom. Two methods to simulate the excited state XANES spectra are applied, the first is based upon the multi-configurational second order pertur- bation theory restricted active space (RASPT2) method and the second uses a combination of the maximum overlap method (MOM) and time-dependent density functional theory (TDDFT). We demonstrate that despite the simplicity of the MOM/TDDFT method, it captures several qualitative features of the RASPT2 simulations at much reduced computational effort. However, features such as the conical intersection are a particular exception as they require a multi-configurational treatment. For the nuclear dynamics, we demonstrate that even a small number of GBFs can provide reasonable description of the spectroscopic observable. This work provides perspectives for computationally efficient approaches important for addressing larger systems.
Author(s): Northey T, Norell J, Fouda A, Besley NA, Odelius M, Penfold TJ
Publication type: Article
Publication status: Published
Journal: Physical Chemistry Chemical Physics
Year: 2019
Pages: epub ahead of print
Online publication date: 20/08/2019
Acceptance date: 20/08/2019
Date deposited: 20/08/2019
ISSN (print): 1463-9076
ISSN (electronic): 1463-9084
Publisher: Royal Society of Chemistry
URL: https://doi.org/10.1039/C9CP03019K
DOI: 10.1039/C9CP03019K
Altmetrics provided by Altmetric