Browse by author
Lookup NU author(s): Professor Tamara Rogers
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Copyright © 2019 by Annual Reviews. All rights reserved.Stars lose a significant amount of angular momentum between birth and death, implying that efficient processes transporting it from the core to the surface are active. Space asteroseismology delivered the interior rotation rates of more than a thousand low- and intermediate-mass stars, revealing the following: □ Single stars rotate nearly uniformly during the core-hydrogen and core-helium burning phases. □ Stellar cores spin up to a factor of 10 faster than the envelope during the red giant phase. □ The angular momentum of the helium-burning core of stars is in agreement with the angular momentum of white dwarfs. Observations reveal a strong decrease of core angular momentum when stars have a convective core. Current theory of angular momentum transport fails to explain this. We propose improving the theory with a data-driven approach, whereby angular momentum prescriptions derived frommultidimensional (magneto)hydrodynamical simulations and theoretical considerations are continuously tested against modern observations. The TESS and PLATO space missions have the potential to derive the interior rotation of large samples of stars, including high-mass and metal-poor stars in binaries and clusters. This will provide the powerful observational constraints needed to improve theory and simulations.
Author(s): Aerts C, Mathis S, Rogers TM
Publication type: Review
Publication status: Published
Journal: Annual Review of Astronomy and Astrophysics
Year: 2019
Volume: 57
Pages: 35-78
Online publication date: 29/05/2019
Acceptance date: 02/04/2016
ISSN (print): 0066-4146
Publisher: Annual Reviews Inc.
URL: https://doi.org/10.1146/annurev-astro-091918-104359
DOI: 10.1146/annurev-astro-091918-104359