Browse by author
Lookup NU author(s): Professor Akane Kawamura
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. The ten–eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 μm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors.
Author(s): Nishio K, Belle R, Katoh T, Kawamura A, Sengoku T, Hanada K, Ohsawa N, Shirouzu M, Yokoyama S, Suga H
Publication type: Article
Publication status: Published
Journal: ChemBioChem
Year: 2018
Volume: 19
Issue: 9
Pages: 979-985
Print publication date: 04/05/2018
Online publication date: 17/04/2018
Acceptance date: 02/04/2018
ISSN (print): 1439-4227
ISSN (electronic): 1439-7633
Publisher: Wiley - VCH Verlag GmbH & Co. KGaA
URL: https://doi.org/10.1002/cbic.201800047
DOI: 10.1002/cbic.201800047
PubMed id: 29665240
Altmetrics provided by Altmetric